
California Department of Toxic Substances Control 1

Other Tire‐Derived Chemicals of  
Interest
SUMMARY AND QUESTIONS FOR JULY 2021 DTSC WORKSHOP
The California Department of Toxic Substances Control’s (DTSC) Safer Consumer Products Program 
has added Motor Vehicle Tires as a new product category in its 2021-2023 Priority Product Work 
Plan. DTSC has conducted a preliminary screening of chemicals presumed to be found in tires that 
may be of concern for the aquatic environment. This is part of an initial evaluation of this category, 
in conjunction with ongoing work on zinc and N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine 
(6PPD) in motor vehicle tires. To advance our work on tires, DTSC is seeking information related to 
the chemicals highlighted in this document and, specifically, the related questions. DTSC also 
welcomes information on other chemicals in tires that may be of concern for the aquatic 
environment. 

CHEMICALS: BENZOTHIAZOLES

Overview
Benzothiazoles and 2-mercaptobenzothiazole (CASRN 149-30-4) are a class of chemicals used in 
tires as vulcanization accelerators during the manufacturing process.[1] Many benzothiazole 
derivatives can be found in finished tires.[2] In some cases, benzothiazole derivatives are considered 
impurities and have been used as an indicator of tire wear particles in the environment.[2,3] 
Benzothiazoles are known to leach from tires.[4–6] While the data are limited, these compounds 
have been found in stormwater runoff and road dust in California and in sediments in San Francisco 
Bay.[7,8]

2-mercaptobenzothiazole is the only benzothiazole on DTSC’s Candidate Chemicals List and may 
cause cancer. 2-mercaptobenzothiazole has also been found to be environmentally persistent and 
to impair wildlife survival. These hazard traits may also apply to others in the larger class of 
benzothiazoles.[9–13] 

Questions
- Are benzothiazoles used in all tires? If not, what determines what applications they are used 

in?
- Which benzothiazoles are used in tires and at what concentrations? How does this vary 

across tire types or brands? 
- What is the function of benzothiazoles in tires? What determines which benzothiazoles are 

used in a tire? 
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- Please provide information on the benzothiazole impurities that have been identified in the 
benzothiazole source material used in tires, such as 2-(4-morpholinyl)benzothiazole and N-
cyclohexyl-2-benzothiazolamine, and whether these benzothiazole impurities have also 
been identified in tire products. 

o If they have been, at what concentrations? 
o How are these impurities formed? 
o Are impurities present in the original benzothiazole material used, or created during 

vulcanization? 
- What techniques, if any, are used to remove benzothiazole derivatives that are present in 

tires as impurities? 
- Have there been evaluations of safer alternatives for benzothiazoles used in tires? If yes, 

which alternatives were identified and what data were used for the evaluation? 

CHEMICALS: CHLORINATED PARAFFINS

Overview
Chlorinated paraffins (CPs) are a group of hydrocarbons of various chain lengths in which multiple 
hydrogen atoms are substituted with chlorine atoms; they can be divided into short- (SCCP; ≤C10-
13), medium- (MCCP; C13-17), and long-chained (LCCP; ≥C18) congeners.[14] CPs are included as a 
class in DTSC’s Candidate Chemicals List. SCCPs are no longer produced in the United States and 
have presumably been replaced with MCCPs and LCCPs.[15] CPs have been detected worldwide, in 
almost every environmental compartment and in remote areas.[15] 

CPs perform a variety functions in manufacturing processes and repair of tires (or other rubber 
parts), and for general vehicle repair and maintenance, including use as lubricants and rubber 
additives.[15–21] CPs have been identified in crumb rubber.[14]

CPs as a class are considered to be bioaccumulative and persistent.[18] Within the class of CPs, as 
chain length and degree of chlorination increases, the likelihood of bioaccumulation and 
persistence increases.[18] Individual CPs, some of which have also been identified in tire 
manufacturing, have been shown to be toxic to aquatic species such as invertebrates.[18,22–26] 

Data on the presence of CPs in the aquatic environment in North America are limited.[27,28] A 2008 
study conducted by the San Francisco Estuary Institute identified SCCPs in white croaker, 
cormorant eggs, and harbor seal blubber collected from San Francisco Bay.[28] Indirect data are 
available for leaching of CPs from the rubber components within kitchen blenders,[29] but not 
specifically from tires. At this time, more data are needed to understand if tires are a source of CPs 
to the environment. 
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Questions
- Which CPs are used in tires and at what concentrations? 
- What is the function of CPs in tires? What determines which CPs are used in a tire? 
- Are CPs used in all tires? If not, what determines which applications they are used in?
- Could you provide data on CP degradation, leachability, or reaction byproducts in tires? 
- Have there been evaluations of safer alternatives to CPs used in tires? If yes, which 

alternatives were identified and what data were used for the evaluation? 

CHEMICAL: 1,3‐DIPHENYLGUANIDINE

Overview
1,3-diphenylguanidine (DPG), CASRN 102-06-7, is currently not on DTSC’s Candidate Chemicals list. 
DPG is used industrially as a rubber component, accelerator, fuel additive, process regulator, and 
process aid.[30] In tires specifically, DPG is used to accelerate the vulcanization process during 
manufacturing.[31,32]

DPG has been detected in the aquatic environment, specifically in roadway runoff and waters 
affected by urban runoff in California.[33,34] A study by Peter et al.[32] also found DPG in road runoff 
and surface water in the Seattle, Washington area, further confirming the presence of DPG in the 
environment. In addition, DPG has been shown to leach from tires, indicating that tires may be a 
source of DPG in the aquatic environment.[35]

DPG is a registered substance under the European Chemicals Agency REACH regulation, where it is 
classified as toxic to aquatic organisms, with a potential to cause long-term adverse effects in the 
aquatic environment.[36] Specifically, DPG is considered toxic to fish, aquatic invertebrates, and 
algae, and is not readily biodegradable (ECHA 2021). DPG is also classified as a persistent, mobile, 
and toxic (PMT) substance and as a very persistent, very mobile (vPvM) substance, under criteria 
developed by the German Environment Agency.[37]

Questions
- Is DPG used in all tires? If not, what determines what applications it is used in?
- What is the typical concentration of DPG used in tires? How does this vary across tire types 

or brands?
- What factors influence the leachability of DPG from tires? What information is available on 

the rate and extent of leaching of DPG from tires to the environment?
- Can you provide additional toxicology or monitoring data for DPG that we should be aware 

of?
- Have there been evaluations of safer alternatives for DPG in tires? If yes, which alternatives 

were identified and what data were used for the evaluation? 
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CHEMICALS: (METHOXYMETHYL) MELAMINES

Overview
Methoxymethyl melamines are a family of related chemical compounds characterized by a 1,3,5-
triazine ring. There are no methoxymethyl melamines on DTSC’s Candidate Chemicals List. 
Hexamethoxy methylmelamine (HMMM), CASRN 3089-11-0, appears to be the methyoxymethyl 
melamine with the most widespread industrial use.

HMMM has been generically described as a “cross-linker”; it is used in certain fabric, textile, and 
leather products, paints, coatings, some plastic and rubber products, and glazing and polishing 
agents, as well as tires.[38–43] DTSC was unable to find any specific information regarding the 
function or quantity of HMMM used in tires.  

Methyoxymethyl melamines have been identified in road runoff, urban creeks, and leachate from 
tire wear in the state of Washington.[32] While additional data on the presence of methoxymethyl 
melamines in the aquatic environment are lacking, it appears that HMMM from road runoff may be 
a ubiquitous contaminant of urban watersheds.[44] Toxicity and hazard information for HMMM and 
other methoxymethyl melamines is exceedingly limited. There have been some reports that 
HMMM is toxic to daphnia, commonly called water fleas, which are important components of 
many aquatic food chains, but aquatic toxicity has generally been considered low.[45] However, the 
potential toxicity of HMMM has not been fully evaluated.[45] 

Questions
- Are methoxymethyl melamines used in all tires? If not, what determines what applications 

they are used in?
- Which methoxymethyl melamines, including HMMM, are used in tires and at what 

concentrations? How does this vary across tire types or brands? 
- What is the function of methoxymethyl melamines in tires? What determines which 

methoxymethyl melamines are used in a tire? 
- Could you provide additional toxicology or monitoring data for methoxymethyl melamines 

that we should be aware of?
- Have tire manufacturers evaluated alternatives to the use of methoxymethyl melamines in 

tires? If yes, which alternatives were identified and what data were used for the evaluation? 

CHEMICALS: OCTYLPHENOL ETHOXYLATES

Overview
Octylphenol ethoxylates (OPEs) are a subclass of alkylphenol ethoxylates that range in degree of 
ethoxylation. The entire class of OPEs is on DTSC’s Candidate Chemicals List. Since OPEs degrade 
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into octylphenol (OP), we have also included OP in our review of this class. These chemicals are 
typically used as surfactants[46,47] and are used in a number of automotive-related applications, 
including automotive maintenance and repair and in general automotive consumer care products 
such as tire cleaning products, automotive paint, automotive lubricants, and anticorrosive 
materials and paints.[48,49] OP and OPEs have been detected in rubber products.[48–50] OP is most 
likely present as an impurity due to its use as an intermediate for producing phenolic resins that are 
used in vulcanization during the tire manufacturing process.[50] At this time, it is unknown whether 
OPEs in rubber degrade to OP within the tire itself. 

In the aquatic environment, OPEs degrade to less ethoxylated OPEs species or to OP.[51] OP and 
OPEs have been found to have the following hazard traits: endocrine toxicity, bioaccumulation, 
environmental persistence, and wildlife impairment (survival, reproduction, and possibly 
development).[52–57] General trends for alkylphenol ethoxylates indicate increasing toxicity with 
decreasing degrees of ethoxylation.[53] Thus, OPEs become increasingly toxic as they break down in 
the environment. 

OP and OPEs have been detected in the aquatic environment,[32,58–62] which has been typically 
attributed to their use as surfactants. There is currently no clear evidence that these chemicals 
leach from tire rubber into the environment. More information is needed to better understand the 
potential for tires to contribute to aquatic organisms’ exposure to OPEs and OP. 

Questions
- Are OP/OPEs used in all tires? If not, what determines the applications they are used in?
- Which OP/OPEs are used in tires and at what concentrations? How does this vary across tire 

types or brands? 
- What is the function of OP/OPEs in tires? What determines which OP/OPEs are used in a 

tire? 
- What techniques, if any, are used to reduce the OP and OPEs present in tires as impurities? 
- What data are available on the degradation of OPEs to OPs during manufacturing? 
- What factors influence the leachability of OP/OPEs from tires? What information is available 

on the rate and extent of leaching of OP/OPEs from tires into the environment? What 
information is available on the contribution of tires to the levels of OP and OPEs measured 
in the environment?

- Have there been evaluations of safer alternatives for OP/OPEs in tires? If yes, which 
alternatives were identified and what data were used for the evaluation? 
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CHEMICALS: POLYCYCLIC AROMATIC HYDROCARBONS

Overview
Polycyclic aromatic hydrocarbons (PAHs) are a class of over a hundred different compounds 
consisting of molecules with two or more fused benzene rings.[63,64] The entire class is included on 
DTSC’s Candidate Chemicals List. PAHs occur naturally as complex mixtures in materials such as 
crude oil and gasoline, or can be formed during incomplete combustion of fossil fuels, wood, 
garbage, and other organic matters.[63,64] PAHs can also be manufactured as single compounds.[63] 
PAHs can be found in tires from their use as extender oils,[2] which are used to improve rubber 
properties and processing and in reinforcing agents such as carbon black.[65] 

PAHs are found ubiquitously in California, including in stormwater runoff,[66] sediments,[67,68] 
surface water,[68,69] and aquatic organisms.[68] Although structurally diverse, PAHs share similar 
chemical properties and mechanisms of toxicity; they are often represented by benzo[a]pyrene, a 
well-studied PAH that is among the class members found in tires. Benzo[a]pyrene is classified by 
the European Chemicals Agency’s REACH legislation as a candidate substance of very high concern 
because it is a carcinogenic, mutagenic, and reproductive (CMR) toxicant that is persistent, 
bioaccumulative, and toxic (PBT) and very persistent and very bioaccumulative (vPvB).[70] 
Benzo[a]pyrene and other PAHs are very toxic to aquatic life at multiple trophic levels, including 
fish, invertebrates, and algae and have long lasting effects.[70,71] They can impair wildlife survival, 
development, and reproduction.[70,71]

Questions
- Are there any industry standards regarding which PAHs can be used in tires manufactured 

or sold in the United States, and at what concentrations?
- Are highly aromatic oils still used as extender oils in tires sold in the United States? 
- What concentration of PAHs are found in carbon black used in tires sold in the United 

States? What data are available on the likelihood of PAHs from carbon black used in tires 
being released to the aquatic environment?

- Do other components of tires beyond extender oils and carbon black contain PAHs? If so, at 
what concentrations? 

- Have there been evaluations of safer alternatives for PAHs in tires? If yes, which alternatives 
were identified and what data were used for the evaluation?

- Can you provide aquatic toxicity data for PAHs from carbon black?
- Why are alkylated PAHs used in tires? How does their use in tires differ from non-alkylated 

PAHs? What are the concentrations of alkylated PAHs in tires and in which tire 
components?
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